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ABSTRACT

Is there an upper limit to the number of elements or, equivalently, samples, that can be usefully
employed for direction finding or nulling a set of incoming wavefronts within a fixed size aperture?
Mathematical theory states that this number isunlimited, but this result requires a perfect knowledge of
the wavefront correlation matrix (i.e., a noise- and error-free environment) and infinite precision. To
answer the question realistically, one must consider the element-to-element correlation matrix resulting
from a set of incoming wavefronts impinging on an array of antenna elements. This matrix becomes ill-
conditioned as the number of elements within the aperture increases.

This report shows that each eigenvalue associated with the correlation matrix equals the sum of the
powers of all the wavefronts projected onto the dimension represented by its corresponding eigenvector.
If the eigenvalue is of negligible power and easily lost in noise and other causes of data corruption, then
the essential information associated with that eigenvector, and the dimension it represents, is lost.
Elements corresponding to the number of small eigenvalues are of little value for the given set of
wavefronts. The results must be generalized by choosing a set of wavefronts that encompasses the entire
range of interest so that if an element is of questionable value for this “testing wavefront,” then it has
doubtful value for any set of wavefronts. Using the testing wavefront, an upper bound can be determined
to the number of useful elements that can be employed within a specified fixed aperture.
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1. INTRODUCTION

How many antenna array elements (samples) are beneficial for direction finding or nulling with a
fixed aperture size? Mathematically, additional elements are beneficial; however, perfect knowledge of
the ideal correlation matrix and infinite precision are required. With finite precision, finite time averaging,
finite signal to noise, finite dynamic range, radio frequency interference, antenna element coupling,
nonuniform directional background noise, and pattern distortions, the number of useful elements is
compromised. To answer the question realistically, the correlation matrix resulting from a set of incoming
wavefronts is considered; the matrix becomes ill-conditioned as the number of elements increases within
the aperture. Each eigenvalue associated with the correlation matrix corresponds to the power sum of all
the wavefronts projected onto the dimension represented by its corresponding eigenvector. If the
eigenvalue is of negligible power and easily lost in noise and other causes of data corruption, then the
essential information associated with that dimension is lost. By reducing the number of elements to
correspond to the number of significant eigenvalues and suitably positioning the remaining elements
within the specified aperture, little information regarding the set of wavefronts is lost.

The result is generalized by postulating a set of wavefronts that encompasses the entire range of
interest; if an element has questionable values for this wavefront set, designated the testing wavefront,
then it has doubtful value for any set of wavefronts. Using the testing wavefront, an upper bound can be
determined to the number of useful elements that can be employed within a specified fixed aperture.

Linear arrays of fixed aperture are considered, then generalized to two-dimensional circular arrays.
This report is confined to linear and circular arrays, but the technique can be applied to more general (e.g.,
three-dimensional) arrays.




2. BACKGROUND

Considered here is a linear array of M isotropic antenna elements positioned at locations d,, along
the x-axis. The M vector of baseband receiver outputs at a sampling time, #;, due to the k&th narrowband
received signal of wavelength A and planewave direction 6} off broadside to the axis, is

X)) =s) VZD

where the complex scalar s;(2,) represents the amplitude and phase of the received signal at element one
(using reference element m = 1 so that d; = 0). V(7)) is the M-dimensional vector of samples that is
referred to as the “response vector” and defined by

V() =1, Zd), Zdd),..2da)"
where, in turn,
Zy(d,,) = exp(=27d,, sin G/4)

so that Zy(dy) = 1. The s,(t;) are modeled as zero-mean, independent (in both & and i) random sequences of
stationary statistics.

Uniform linear arrays are considered first, then generalized to nonuniform and two-dimensional
arrays. For the uniform array, d,, = (m-1)d, where d is the common separation between elements. In this
case, Z(dy) becomes z, and Z(d,,) =z, where

zy = exp(—j2zd /A sin 6,)

The response vector, Z(zk), then simplifies to ¥(z,), where

Ve =,z 2d, . ..,z

This latter vector ¥(z) is called a Vandermonde vector. In this case ¥, represents ¥(z,). Any distinct set of
M or fewer Vandermonde M-dimensional vectors is linearly independent. In order that no two off-
broadside angles, 6, share the same value of z;, d must be no larger than 4/2.

If there were K signal wavefronts (K < M) impinging on the array, the vector of receiver outputs at
time £ would be




l(ti)=1’t_(t,~)+i X, () ey,

k=1
where n(t)) is the M vector of internal receiver noise and other noise sources, which for this analysis are

assumed independent from receiver to receiver and of average power level ¢ in each receiver.

The correlation (covariance) matrix, R, is obtained by averaging the M X M outer product
Xi(2)X(1)", where the H operator is the conjugate transpose. It is assumed that the signal wavefronts are
all uncorrelated so that

E{X (t)X! ()] =0 for kzj . )
With this signal model, the expectation for the R matrix becomes

R=E{X0)Xt)"y =vPvi+ o1
where P is a K x K diagonal matrix with diagonal terms p,, which, in turn, are given by

pk=E{|Sk(t,.)|2}, fork=1,2...,K . 3)

V is an M x K matrix having columns that are K Vandermonde vectors, each column corresponding to a
signal direction. The signal-dependent component of the R matrix, S, can be spectrally decomposed to

K
S=ypvi=> p V. V{ )
k=1
to obtain
< H
S=yPri=) A w ' . )
k=1

Note that the subscripted As refer to eigenvalues, whereas the unsubscripted A refers to wavelength. The K
Vandermonde vectors span a space, Sk, of dimension K. The M eigenvectors, u,, span a space Sy of
dimension M. The space spanned by Sk for K < M is a subspace of Sy. The space Sx is referred to as the




“signal subspace” that is identical to the space spanned by the K eigenvectors of S having nonzero
eigenvalues. The remaining M-K dimensional subspace is the noise space. Since all the eigenvectors of a
Hermitian matrix are mutually orthogonal, the Vandermonde vectors are each orthogonal to the noise
subspace. The noise space can be used to direction find up to M-1 wavefronts.

In an ideal situation, S is obtained from R by subtracting &l In reality, there is no R, but it can be
estimated with a sampled version, R, by averaging Xi(#)Xu(t)"” over, say L samples,

7 1 L H
== (1) £ (2) ="+ ©6)
L°: ’
where, for the error matrix, E, is
2
o1 €12 -+ €M
2
E = E2 O2 -+ E2m 7)
2
Emi Em2 <+ OM

and where L is as large as practical.

For the ideal case, E is simplified to 1. If it is assumed that the K wavefronts are incoherent, then
the signal cross-terms in R average down to near zero, leaving, essentially, the signal self-terms. The
independence of the noise terms causes both the noise cross-terms and the signal-noise cross-terms to
average down to nearly zero so that the &,, terms should all be close to zero.

If all the element patterns and receivers are identical, then the o, are about equal, giving R = R. To
ascertain the estimate of S, a value must be determined to be used for &, and 0] must be subtracted from
R'. In the ideal case this step is relatively easy because with K < M, the noise eigenvalues of R are all J.
Instead, there is R, and since E has nonzero off-diagonal terms and the o,” are not identical on the
diagonal, the choices for K and & are usually not obvious [1-5]. With one nonzero pair, &, = Emm# 0,
each eigenvalue is shifted by an amount proportional to &,, with the proportionality factors summing to
one [6]. Critical information in the eigenvalues and eigenvectors is thereby corrupted. A typical
noise/distortion floor is expected to be in the range of 30 dB below the peak signal-to-noise ratio (SNR).
With precision calibration, a further reduction can be expected on the order of 15 to 20 dB, which is the
current limit, but even if a 10 dB improvement is allowed, it would make a difference of no more than one
useful sample. As a result, most systems will have difficulty distinguishing between signal and noise
eigenvalues due to distortions and nonuniform noise when the 4,, are about 40 dB below the largest signal




eigenvalue. For the most optimistic situation, another 10 to 15 dB may be allowed, which might admit
one or two more useful samples; the number of useful elements, or samples, is, therefore, limited.



3. DETERMINING SAMPLING LIMITS

Information about the signal waveforms impinging on the array is obtained from the larger
eigenvalues and the corresponding eigenvectors of the S matrix. A correlation matrix must be constructed
that ultimately will allow the determination of the number of useful samples; i.e., the useful number of
elements in the array for a given aperture size in wavelengths. A Vandermonde vector, V,, is expanded in
terms of the eigenvectors of S, to obtain

M
v, :Zam Uy where 2, = y_gy_k ®

m=1

so that the a,, are the projections of the kth Vandermonde on the mth eigenvector. By definition,

H
A, =u Su,

so that

©)

2

K K
= puluh v, ) (¥ 1_4,,,)=;pk|am

k=1

Each eigenvalue is equal to the sum of the projected powers of all the Vandermondes onto its
eigenvector [see Equation (9)]. Small eigenvalues correspond to dimensions in which there is almost no
power from any wavefront. In an ideal case, any nonzero level is satisfactory for extracting information,
which is not true in the real environment, where S is not known. Note that if eigenvalues are too small,
they cannot be determined with good accuracy, and the coordinates corresponding to their eigenvectors
provide no useful information [see Equation (9)]. Therefore, fewer coordinate axes, i.e., fewer samples,
would be as useful, less complicated, and less expensive.

If interest is in a specific set of wavefronts, the corresponding correlation matrix can be formed and
its eigenvalue rolloff analyzed. Generally, however, a set of wavefronts must be selected that generate a
matrix S that allows one to determine, for a given aperture, coverage region, and signal spatial
distribution, the maximum number of useful samples that can be taken under some total noise/distortion




level assumption. The resulting eigenvalue rolloff then gives an upper bound to the number of useful
elements/samples for a particular signal spatial distribution.

Given that it is not desirable to artificially limit the number of significant eigenvalues due to lack of
signals, a set of wavefronts must be selected with K > M and, preferably, K >> M, as well as choosing
signal wavefronts that will not bias the results. To achieve this end, the signal directions and the signal
power levels are made uniform (P = I) so that identical signal plane waves uniformly cover the entire
region. The resulting set of wavefronts is referred to as the “testing wavefront.” The intent is to
manufacture a covariance having as many high eigenvalues as possible. With M as the number of antenna
elements, 4/A as the aperture in wavelengths, and —W to W (W<2) as the coverage region, S is

K
5= p V. Vi Es.l (10)
k=1
with
1 W/6 ¢ (m-n) A

)

- - j2r -—sin(k5¢)5
Spon e’ mya ¢ (11)
W Silse

where signals are separated by an angle 8¢. If 6¢ approaches zero, then, since Kdp= W, s,,, approaches

1 " e lmnag
T L (12)
-

The Bessel function identity [7, #9.1.41 with ¢ = exp(— @)]

eI = Y I (2) (13)

p=—c

can be used in Equation (12) to obtain, after changing the order of integration and summation,



2W AM-1) )3
(14)
o [ z%ﬁ)m) STk
With the identity [7, #9.1.5]
J,@) =, @) . (15)
Equation (14) can be written
Rl = PR Gt

p even

and note that for W= a2 (90°), s, simplifies to the J, term only. For a nonuniform array, with the mth
element located at d,, and 4 = d),— d,, the result in Equation (16) is generalized to

2z - 2 sin(pW)
= - - 2 E —_— - —_— .
Smn JO( ﬂ (dm dn))+ = JP( 2’ (dm dn)) p W (17)

p even

Since the testing wavefront contains fronts from more directions than most practical scenarios,
eigenvalues are expected to have more sources contributing to their value, they roll off more slowly, and
an upper bound to the count is being produced.

For a uniform array, S, = Sm.(M, A/A, W) is a function of three parameters; M is the number of
samples (or, equivalently, elements); 4/A is the aperture (in wavelengths), and the observation range is
—W to W. The investigation of signal space behavior and its eigenvalues begins for the cases in which the
array is uniform and W = 2 (90°) and generalizes the results to other cases. The intent is that the
resulting S matrices should have the slowest eigenvalue drop-off for the given parameters, hence the most
measurable eigenvalues. Any other signal arrangement produces a set of eigenvalues that roll off more
quickly.




4. UNIFORM ARRAYS

Generated first are the S matrices for W= 7/2(90°), a set of A/1s, and a sequence of different values
of M. Eigenvalues are arranged in decreasing order for each case, and the rolloffs of these eigenvalues are
examined. Figure 1 shows 4/4 =1 and M varying from 6 to 10. Note that, as far as they can, the relative
eigenvalues follow almost identical rolloff sequences, nearly independent of M. Figures 2 and 3 show
similar results for 4/A =2 and 4/1=3.

Relative Eigenvalue (dB)

Figure 1. Eigenvalue rolloff versus m for M = 6-10, A/A =1, uniform array, testing wavefront.

An important property in all cases is that as M increases and the spacing between elements falls
well below 4/2, the S matrix becomes increasingly ill conditioned; with increasing M, some eigenvalues
become too small to allow an accurate calculation of the required projection coefficients. The dimension
number beyond which the rolloff becomes rapid is dependent on the aperture of the array and W, the
larger the aperture, the larger the dimension number at the knee in the curve. Since the knee is ever
present, a definite limit exists to the number of useful elements that can be packed into a fixed-size
aperture.

Holding 4/A=2 and M= 11, W is reduced to 57/12 (75°), /3 (60°), and /4 (45°) and results are
determined with the change in W. Figure 4 shows that the drop-off occurs somewhat earlier as W
decreases, but the results are not particularly sensitive to changes in W. The slowest rolloff occurs when
W= /2 (90°), i.e., the maximum number of useful samples for a given threshold level.
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Figure 3. Eigenvalue rolloff versus m for M = 9~13, A/A =3, uniform array, testing wavefront.
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Relative Eigenvalue (dB)

Figure 4. Eigenvalue rolloff versus m for M = 11, A/A =2, W = 45° 60°, 75° and 90°, uniform array, testing
wavefront.
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5. NONUNIFORM ARRAYS

Each element location, d,,, must be specified for the nonuniform array. S matrices are generated
using Equation (17) in place of (15). While the S matrices were symmetric and Toeplitz for uniform
arrays, these general S matrices are not Toeplitz.

It was shown earlier that the W= 7£/2 (90°) cases produce the slowest rolloff and that the results are
not sensitive to the choice of W. Initially, different cases with W = 7z /2 (90°) are considered for the
nonuniform array. To guarantee that these arrays cover the full aperture, element one is at position zero
and element M at position 4. Even though most nonuniform arrays are designed to thinly or sparsely
sample an aperture, it is being oversampled here to show that the sampling results obtained for uniformly
spaced arrays are not dependent on uniform sampling. Two well-known nonuniform spacings are
considered—log-periodic and random.

5.1 LOG-PERIODIC SPACING

Log-periodic (more precisely, periodic log-frequency) spacing specifies most element locations as
scaled by a constant factor, “a” (@ > 1), from the previous location. The first element, d,, is at zero. The
next, d,, is arbitrary. The third and all subsequent elements are scaled by “a” so that ds = ad,, dy = ads =
dd,, etc, with dy, = a"*?d, being at the aperture point 4. The separation, ds— d,= (a — 1)d, is less than d, if
a <2 and would then be the smallest spacing, preferably < /2.

The results for this array are given in Figures 5-7. The same behavior as the uniform array is seen
except that the rapid fall-off is somewhat greater than with the uniform array, indicating that, for a dense
array with average spacing less than A/2, the uniform array is the better arrangement. Figure 8 is an
example of the eigenvalue fall-off for different Ws. Results are very similar to the uniform case. Note that
log-period spacing is usually adopted for sparse arrays where economy in the number of elements is a
primary issue.

52 RANDOM SPACING

Except for the extreme, elements are randomly placed within the aperture; therefore, if there are
nine elements, two are fixed-end positions, with seven randomly placed between them for a uniform
distribution. Results are shown in Figures 9—11 and are almost identical to those of the log-periodic
spacing as is the varying W example given in Figure 12. Both nonuniform arrays exhibit behavior similar
to the uniform array. There is clearly a practical limit to the number of useful samples for linear arrays.

15




344558-5

Relative Eigenvalue (dB)

Relative Eigenvalue (dB)

Figure 6. Eigenvalue rolloff versus m for M = 7—11, A/A =2, log-periodic array, testing wavefront.
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Figure 7. Eigenvalue rolloff versus m for M = 9—13, A/A =3, log-periodic array, testing wavefront.
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Figure 8. Eigenvalue rolloff versus m for M = 11, A/A =2, W = 45°, 60°, 75°, and 90°, log-periodic array, testing
wavefront.
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Figure 10. Eigenvalue rolloff versus m for M = 7—11, A/A = 2, random array, testing wavefront.
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Relative Eigenvalue (dB)

Figure 11. Eigenvalue rolloff versus m for M = 913, A/A = 3, random array, testing wavefront.

344558-12

Relative Eigenvalue (dB)

Figure 12. Eigenvalue rolloff versus m for M = 11, A/A =2, W = 45°, 60°, 75°, and 90°, random array, testing
wavefront.
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6. CIRCULAR ARRAYS

Arrays with two- or three-dimensional apertures can also be investigated. For a general three-
dimensional array with elements at position d,,, where

A’ = Coms Y Zm)

and n is the direction vector (¢ is the spherical azimuth angle and @ the spherical elevation angle)
n' =(cosgsiné,singsiné,cos) (18)

the response vectors become

V() =(1,2dd), Zdds), . .. Zdw))"

where, in turn,

Zid,) = exp(27(dn'n) )

Then the terms of S, s,,,, become

1 1
Smn:__
2wWuU

© e, @

W
I eIl d g d @ (19)
-w
where 0 to U is the range on the elevation angle 6 u,(m,n), u,(m,n), and u,(m,n) are defined as satisfying
2z _ . . .
- [(d, n)-(d, nl=ulmn)cos @sin@+y,(mn)singsin@+y,(mn)cosd . (20)

In particular, a radius r circular array in the x-y plane, with M uniformly spaced elements, gives
d! =r(cos(m—1) 2z/M,sin(m-1)27/M,0) , 21)

and the u,(m,n) and u,(m,n) become

21




u(m,n) = Zﬂ—g—[cos 22(m—1)/M —cos 2rt(n—1)/M] 22)

and
u,(m,n)= Zﬂ%[sin 270(m—1)/M —sin 2z (n—1)/M] 23)

with u,(m,n) = 0. For the uniform circular array, the s,,, become

L
mn W

QI*—*

Uw
J‘ I j(u,cos¢9+u,sm€)d¢d9 ) (24)
0-Ww

For a numeric generation of the s,,, used for general W and U,

1 1 u/ée w/é ¢ . ) ) )
— & __(}_ Z Z e [u+(m, n)cos(k & g) sin(p & 8) +u, (m,n)sin(k & @) sin(p 50)]5¢ o6 , (25)
p=0 k=-W/5¢
where, specifically,
2rr
u(m,n)= 7 (xm—x.) and gy, -v,) - (26)

Using Equation (25) for a numerical evaluation, the S matrix can be filled and the behavior of its
eigenvalues examined.

The focus now turns to two circular arrays. The first has all its elements uniformly distributed on
the circumference. The second (referred to as “circular-0,”) is similar to the first except that one element
is placed in the center of the circle. A testing wavefront is chosen to cover a +m/2 (+90°) wedge in
azimuth and either a /4 (45°) or /2 (90°) wedge in elevation. Again, the testing wavefront is expected to
produce a slow eigenvalue rolloff and an upper bound to the number of useful elements. For example, the
radius of the circular array is 0.3\. A circle with a 0.3X radius has a 1.885A circumference. With a four-
element array, the elements are separated on the circumference by approximately A/2. As such, the
eigenvalue rolloff is expected to start somewhere between five and six elements. The resulting rolloffs for
four-, five-, six-, and seven-element arrays are plotted in Figure 13.

22
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Figure 13. Eigenvalue rolloff for the circular array, r = 0.3, testing wavefront, M =5, 6, 7, and 8.

These results are repeated in Figure 14 for the circular-0 array. Comparing Figures 13 and 14 shows
that the circular-0 arrangement is generally inferior to the circular array with the same number of
elements. A heuristic argument for this result is that the center element measurement is the average of all
the other element measurements and does not contain substantially new information.

From a collection of 30 scenarios that were designed to represent realistic jamming situations, three
cases were examined. The resulting eigenvalue rolloffs were compared to each other and to the results of
the testing wavefront. Actual jammer locations and power levels for these scenarios are given in
Appendix A. For the circular array (Figure 15), the eigenvalue rolloffs for these scenarios are far more
precipitous than for the testing wavefront. They indicate that only three or four samples (elements) are
useful, even though each scenario has at least 27 jammers. Figure 16 shows the analogous results for the
circular-0 array. The rolloff is slightly faster than for the circular array. Again, the center element appears
to be of dubious value.
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Figure 14. Eigenvalue rolloff for the circular-0 array, r = 0.3, testing wavefront, M= 35, 6, 7, and 8.
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Figure 15. Eigenvalue rolloff for the circular array, r = 0.3, testing wavefront, and three jammer scenarios, M = 6.
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Figure 16. Eigenvalue rolloff for the circular-0 array, r = 0.34, testing wavefront, and three jammer scenarios,
M=6.
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7. FUTURE WORK

When the incoming wavefronts are associated with significant multipath, STAP processing is more
suitable and requires the use of tapped delay lines at each receiver to handle the correlated input [8],
requiring replacement of the element correlation matrix with one that includes the output of the tapped
delay lines. If there are M elements and K taps per element, then the correlation matrix would be an M x
K by M x K matrix. The source or testing wavefront would need to be modified to include the
characteristics of the multipath in the wavefronts; the eigenvalue rolloffs of this expanded matrix would
then be the ones under investigation.

27




8. CONCLUSIONS

For a linear array of aperture 4/A, the number of useful elements (samples) of practical utility is
limited. If the number of elements is limited to those spaced A/2 apart, they are all useful and correspond
to 24/A+1 elements. As more and more elements are added, the correlation matrix becomes ill
conditioned, implying small eigenvalues, which, in turn, imply dimensions in the signal subspace that
have coefficients too small to be valuable as they will be masked by noise. This investigation was
extended to circular arrays, with similar results. Clearly, there is a limit to the number of useful elements
confined within a fixed aperture.
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APPENDIX—EMITTER AND JAMMER DATA SETS

% EMITTER DATA SET casel.out

% Satellite Az (deg) El (deg) Power (dBW)

if(cno=1)

SA=[1, 143.49, 0.95, -161.170;
2, 5.83, 9.17, —159.800;
3, 106.43, 64.90, -152.330;
4, -15.38, 67.68, -153.830;
5, 110.91, 30.42, -158.090;
6, -143.96, 56.83, -154.190;
7, —60.71, 52.31, -157.570];

elseif(cno==2)
% EMITTER DATA SET case2.out

% Satellite Az (deg) El (deg) Power (dBW)
SA=[1, 61.56, 15.27, -160.920;
2, 136.12, 49.35, -159.440;
3, 109.83, 22.89, -158.830;
4, -74.70, 66.43, —155.860;
5, —148.32, 39.24, —-160.150;
6, 0.00, 12.38, -158.670;
7, -13.04, 34.62, -159.880;
8, 146.16, 10.60, -159.310];

elseif( cno==3)
% EMITTER DATA SET case3.out

% Satellite Az (deg) El(deg)  Power (dBW)
SA=[1, 136.42, 69.88, ~153.800;
2, 17746, 4147, ~158.420;

3, 4971, 48.92, ~156.850;

4, ~154.15, 8.14, ~162.000;

s, 13.72, 8.72, ~161.380;

6, ~15.72, 0.91, ~163.230;

7, 68.88, 51.94, ~156.580;

8, 76.82, 7.24, ~161.480;

9, 12497, 35.40, ~157.090;

10, 11435, 4.76, ~161.400;];

% 11, 0.0 0.0 ~130];
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%JAMMER DATA SET

if(cno==1)

%Jammer
JA=[1,

- -

“

-

-

0NV AW

casel

Az (deg) El (deg) Power (dBW)
56.88, 54.17, -114.154
173.15, 84.09, —-117.407
42.10, 61.02, -136.083
53.14, 55.55, -110.831
37.69, 63.86, —133.784
63.75, 51.88, —-124.889
49.52, 57.15, -136.222
71.28, 49.96, -125.575
41.38, 61.45, -135.430
53.35, 55.47, -136.617
36.85, 64.41, -133.789
170.71, 81.64, -117.242
174.31, 85.27, -130.050
62.51, 52.20, -125.383
53.83, 55.21, -115.507
99.88, 48.79, -118.332
—-178.24, 92.31, -122.050
177.32, 88.24, -117.136
103.32, 49.15, -119.662
69.19, 50.62, -113.307
71.10, 49.62, -105.939
70.14, 50.22, -125.200
60.99, 52.23, -106.727
172.14, 82.62, -94.359
109.48, 50.29, -118.389
105.53, 49.33, -119.938
104.03, 49.25, -119.507
66.36, 51.12, -125.195
68.54, 50.57, —-125.670
56.20, 54.01, —105.094
57.60, 53.80, -109.896];
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JAMMER DATA SET case2

elseif(cno == 2)

%Jammer
JA=11,

H

-

“

»

OO\)O\VLIIAU.)[\)

'

Az (deg)
-137.93,

173.76,

—-95.60,
~119.64,
—-126.33,

175.95,

—91.89,
-136.62,
-130.17,
-111.63,
-143.27,
-131.84,
-107.37,
—-137.33,
-101.21,
-111.59,
-132.37,
-170.54,
-138.08,

171.72,
-118.75,
-129.76,

174.09,

122.17,
-109.08,

172.71,

175.66,
-116.93,
-134.97,
-163.70,
—-121.34,

126.37,
-102.16,
-157.49,
—-142.02,

35

El (deg)
91.43,
91.08,
92.69,
9231,
91.74,
90.65,
92.83,
92.44,
92.59,
92.37,
91.07,
92.15,
92.29,
92.04,
92.52,
92.37,
92.72,
90.45,
91.42,
90.95,
91.94,
91.51,
91.11,
91.33,
92.29,
91.15,
91.10,
92.13,
92.25,
90.52,
91.88,
91.48,
92.54,
90.68,
91.55,

Power (dBW)

-134.656
-122.672
-133.532
-105.596
-134.433
-123.497
—-137.142
-119.627
-119.741
-106.919

—89.823
-121.165
-136.023
—-121.078
—-135.178
-132.655
-119.125

-90.893
-134.790
-123.440
-135.436

—88.568
-122.559

-95.775
—-134.380
-122.376
-122.665
-133.236
-120.430
-105.219
—-134.551
-124.411
—-134.209
-104.984
—86.870];




JAMMER DATA SET case3
elseif(cno == 3)

Y%Jammer Az (deg) El (deg) Power (dBW)
JA=11, -76.77, 92.65, -95.774
2, 23.26, 94.46, —-134.784
3, 24.79, 95.14, -119.621
4, 29.56, 94.74, -121.159
5, 65.81, 93.48, -139.728
6, 59.26, 93.68, -134.207
7, 44.47, 94.12, —~133.237
8, 35.04, 94.26, -134.430
9, 18.05, 94.18, —-89.827
10, —2.45, 94.10, -105.219
11, 49.79, 94.03, -106.914
12, 40.04, 94.15, —-134.553
13, 23.41, 94.46, -134.659
14, —72.58, 93.10, -124.408
15, -27.10, 94.34, -123.431
16, 42.63, 94.11, —135.441
17, 49.82, 94.04, -132.655
18, -26.12, 94.52, -122.364
19, 52.32, 93.87, —-134.385
20, 31.26, 95.02, ~119.738
21, . -25.06, 94.48, -122.668
22, 24.05, 94.86, -121.077
23 -22.86, 94.13, -123.494
24, 19.34, 94 .45, —-86.865
25, 60.20, 93.63, -135.178
26, 41.78, 94.37, -105.597
27, 29.06, 95.21, -119.121
28, 26.43, 94.93, -120.423
29, -9.30, 94.04, -90.890
30, —24.73, 94.51, -122.550
31, -23.15, 94.54, -122.656
32, 31.61, 94.03, -88.574
33, 3.78, 94.17, -104.985];
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